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Linear stability analyses and nonlinear flow simulations reveal several important 
features of transverse secondary instabilities of two-dimensional Kelvin-Helmholtz 
billows and Stuart vortices. Vortex pairing is found to be the most rapidly amplified 
mode in a continuous spectrum of vortex merging instabilities. I n  certain not 
uncommon circumstances i t  is possible for more than two vortices to  amalgamate in 
a single interaction, demonstrating that the phenomenon that has become known as 
the pairing resonance in fact has a rather low quality factor. Another form of merging 
instability in which a vortex is deformed and drained by its neighbours has been 
revealed by our linear stability analyses of nonlinear shear-layer disturbances. It 
appears, however, that this vortex draining instability may be important only in 
unstratified or very weakly stratified flows, since in moderately stratified Kelvin- 
Helmholtz flow, it is replaced by a highly localized instability which leads to  a 
temporary distortion of the braids. Nonlinear simulations of vortex merging events 
in moderately stratified, high-Reynolds-number shear layers are compared to the 
theoretical predictions of our stability analyses. We investigate and quantify the 
sensitivity of merging events to variations in the initial conditions. The character of 
the flow after merging instability saturates and the nonlinear aspects of multiple 
merging events are also considered. 

1. Introduction 
Numerous laboratory and geophysical observations over the past two decades 

have established that wave-like trains of two-dimensional vortices known as 
Kelvin-Helmholtz (KH) billows figure prominently in the evolution of free shear 
layers possessing a single inflection point in the velocity profile. I n  many instances, 
the large-scale structure of these billows is observed to persist even after the 
introduction of the small-scale disordered motions characteristic of turbulence. At 
the present time, several distinct secondary flow transitions are known to precede the 
onset of turbulence in the layer, the details of which depend on the nature of the 
stratification. 

The numerical analyses of Klaassen & Peltier (1985b, c) established that 
Kelvin-Helmholtz billows in a shear layer possessing moderate stable stratification 
can give rise to the spontaneous growth of longitudinal (i.e. spanwise periodic) 
convective disturbances confined to those regions of the vortex core in which the 
original stable stratification has been inverted by the roll-up of the billow. This work 
theoretically validated the physical arguments advanced by Peltier, Halld & Clark 
(1978) and Davis & Peltier (1979). The occurrence of this instability was subsequently 
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confirmed in a new set of tilted-tube experiments (Thorpe 1985) through the 
streamwise streaks which it engenders on planform shadowgraphs. Three-di- 
mensional organization has also been observed in unstratified shear layers (e.g. 
Breidenthal 1981; Bernal et al. 1980; Jimenez, Cogollos & Bernal 1985; Bernal & 
Roshko 1986; Lasheras & Choi 1988), although the spanwise wavelengths are much 
longer than in the inhomogeneous case. Numerical analyses of homogeneous flows by 
Pierrehumbert & Widnall (1982), Nagata & Busse (1983), and Corcos & Lin (1984) 
have revealed the existence of a secondary bifurcation which has become known in 
the literature as ‘translative ’ instability. Both the convective and the unstratified 
secondary instabilities introduce three-dimensional motions into the shear layer and 
are thought to be intimately connected with the onset of turbulence. 

Another instability in which small-scale wavelike disturbances form on the braids 
between adjoining billows has been observed by Thorpe (1968) in the laboratory and 
Woods (1969) in the oceanic thermocline. These structures have traditionally been 
attributed to secondary Kelvin-Helmholtz (KH) instability (e.g. Woods 1969 ; 
Maslowe 1973). Since a bifurcation of this type would induce a cascade of energy to 
small scales, it has been suggested as an alternative path to turbulence. However, a 
secondary KH instability need not introduce the three-dimensional motions 
characteristic of turbulence, so this idea is of questionable validity (Klaassen & 
Peltier 19856, c ) .  We note that Corcos & Sherman (1976) have presented a simple 
braid model which indicates that secondary K H  instability should only occur for 
Reynolds numbers much larger than those found in Woods’ observations. 

Early laboratory studies (e.g. Browand 1966; Freymuth 1966; Thorpe 1968) have 
documented the occurrence of a secondary subharmonic instability that causes 
neighbouring pairs of vortices to merge. Browand & Winant (1973) furthermore 
established that the presence of stable stratification can reduce the number of 
successive occurrences of such pairing, and Winant & Browand (1974) identified the 
process as a mechanism that greatly accelerates the growth of the shear layer and 
therefore plays a fundamental role in determining the rate at which momentum is 
mixed. Koop & Browand (1979) have shown that the average number of pairings 
expected for a given vortex decreases as the initial stratification is increased. More 
recent observations by Ho & Huang (1982) and Hernan & Jimenez (1982) 
demonstrated that, under certain circumstances, more than two vortices may 
collectively amalgamate in a single interaction. 

Von Karman’s pioneering theoretical analysis of the stability of a row of like- 
signed point vortices (see Lamb 1932) demonstrated that the first subharmonic was 
the most unstable disturbance in a continuous spectrum. Kelly (1967) considered 
the stability of a continuous horizontally period vorticity distribution consisting of 
a parallel flow plus its most unstable eigenfunction as determined by linear theory. 
Kelly’s small-amplitude analysis indicated that pairing might be initiated by a 
resonance mechanism confined to the neighbourhood of the first subharmonic 
wavenumber. Subsequent theoretical efforts (e.g. the nonlinear simulations by 
Patnaik, Sherman & Corcos 1976 and Riley & Metcalf 1980, and the stability 
analyses of Stuart vortices by Pierrehumbert & Widnall 1982) were therefore 
directed exclusively toward understanding the behaviour of the first subharmonic. 

Our main purpose in the present paper is to provide a detailed analysis of the 
various transverse secondary instabilities to which two-dimensional finite-amplitude 
Kelvin-Helmholtz waves are susceptible in one particular region of parameter space. 
As we shall see, a corresponding analysis of such modes of instability for unstratified 
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Stuart vortices will provide a good deal of insight into the more complex stratified 
problem. 

2. Finite-amplitude waves in free shear layers 
In  preparation for analysing their stability, nonlinear two-dimensional Kelvin- 

Helmholtz wave states were simulated with a numerical finite-difference model 
based on the anelastic equations of motion for a Newtonian fluid. In  this model the 
thermodynamic variables are calculated as departures from a hydrostatic isentropic 
background state. In  what follows we denote the vertical profile of density associated 
with this state by p ( z ) .  Since the shear layers considered here are rather shallow 
compared with the local isentropic scale height, the solutions obtained from the 
model are very nearly Boussinesq. A detailed description of the numerical model may 
be found in Peltier et al. (1978). 

The initial state in general consists of horizontally uniform, stably stratified 
parallel shear flow plus a linear superposition of its unstable eigenmodes. The 
horizontally uniform part is of the form 

u, = u, tanh ts), 
8 = 0 + 8, tanh r?), 

where u, and u, denote horizontal and vertical components of the velocity and 8 is 
potential temperature. 0 denotes the potential temperature of the background state, 
while H represents the vertical extent of the numerical domain. The constants u,, 
8, and h appearing in (2.1)-(2.3) correspond to half the velocity difference, half the 
potential temperature difference, and half the distance across the shear layer 
respectively. These constants may be combined with the acceleration due to gravity 
g ,  the kinematic viscosity v, and the thermal diffusivity K ,  to  define the initial 
Reynolds number Re = u, h/v, the initial bulk Richardson number Ri = g8, h/Oui, 
and the Prandtl number Pr = V / K .  For the purposes of this paper we shall focus our 
attention upon a Kelvin-Helmholtz flow with Re = 300, Pr = 1 and Ri = 0.07. 

We employ periodic boundary conditions in the streamwise direction for our 
numerical simulations so that the shear layer evolves in time only. This so-called T- 
layer problem is, from a numerical standpoint, considerably more tractable than the 
S-layer problem in which the shear layer originates a t  a point in space and broadens 
as the flow evolves downstream. A discussion of the relation between these two 
problems may be found in the review by Ho & Huerre (1984). 

By setting the horizontal domain length of the model (L )  equal to the wavelength 
A,, of the most unstable Kelvin-Helmholtz mode of the parallel flow according to 
linear theory (aKH = 0.45, A,, = 14), we obtain wave histories in which the process 
of vortex amalgamation cannot occur (e.g. see figure 1). This time sequence of K H  
wave states is then tested for stability with respect to infinitesimal two-dimensional 
disturbances. The predictions of these analyses are then compared to nonlinear 
simulations in which the domain length is set equal to 2A,, and 3AKH. 

Stuart (1967) reported the existence of a family of steady solutions of the two- 
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0 t = 40.3 14 0 t = 63.4 14 0 i = 83.5 14 

FIGURE 1.  Evolution of (a) the  potential temperature field and (b) the  vorticity field for a KH 
simulation in which the initial state is given by (2.1)-(2.3) plus a perturbation of wavelength AKH. 
The model domain length L = A,, as well, prohibiting the growth of subharmonics. Fields are 
shown for key times ( t  = 40.3, 63.4 and 83.5) at which the net wave Reynolds stress vanishes. 
Dashed contours represent the stream function. Re = 300, Pr = 1 ,  Ri = 0.07. 

dimensional Euler equations. In dimensional form, the stream function of these 
‘Stuart ’ vortices is given by 

$ = ,uo h In [ cosh rT) + A  cos ($1, 
while the vorticity has the analytic distribution 

The parameter A represents the amplitude of the vortex and may take on values such 
that IAl < 1. The value A = 0 corresponds to the parallel flow u, = uo tanh [@-ill)/ 
h],  while A = 1 corresponds to a point vortex. Examples of the vorticity field are 
shown in figure 2 for various values of A .  

The Stuart vortex suffers several limitations as a model of the nonlinear waves 
that are physically realizable in an unstratified parallel flow. Both experimental (e.g. 
Winant & Browand 1974) and numerical (e.g. Riley & Metcalfe 1980; Corcos & 
Sherman 1984) studies of unstratified flow have demonstrated that the shear layer 
between vortex centres is compressed into thin regions known as the braids, while 
Stuart vortices show no such structure. The most unstable mode of the hyperbolic 
tangent shear layer has non-dimensional wavenumber a = 0.44, so that the Stuart 
vortex (wavenumber a, = 1) has about half the wavelength of physically realized 
disturbances. Since the unstratified parallel flow is stable with respect to infinitesimal 
disturbances characterized by a = 1, there would appear to be no mechanism 
through which Stuart vortices may develop naturally from small perturbations to  
parallel flow. Furthermore, unsteady behaviour in the form of vortex nutations (see 
Klaassen & Peltier 1985a) are clearly evident in the unstratified mixing layer 
observations of Hernan & Jimenez (1982) (especially in their figures 7 and 10). As 
long as we bear in mind these limitations, however, the Stuart vortex may 
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A = 0.1 

FIGURE 2. The vorticity field for Stuart vortices having various amplitudes A .  The vertical domain 
height is 10 while the horizontal period is 2n. Identical contour levels are employed in each case to 
illustrate the progression from a weak elliptical vortex to a strongly concentrated, nearly circular 
vortex as A is increased from 0 to 1. ru’ote the absence of the braids characteristic of the nonlinear 
disturbances observed in viscous shear layers. 

nevertheless provide an instructive and convenient model of the two-dimensional 
unstratified shear layer. 

3. The stability of slowly varying two-dimensional flows 
The stability problem for two-dimensional finite-amplitude flow states is 

formulated by expanding the total dimensional velocity and potential temperature 
fields as 

(3.1) 

(3.2) 

U&,Y,Z,t) = uo. i i , (x , z , t )  (1--s,,)+u,u;(x, Y,Z , t ) ,  

e(x,  y, z, t )  = 0 + eo @, Z ,  t )  + eo ~ ( 2 ,  y, Z ,  t ) .  

The y-axis (i = 2) is oriented in the spanwise direction, normal to the plane of the 
two-dimensional basic state. Since the two-dimensional finite-amplitude fields 
denoted by 6, and 6 (which may represent either a nonlinear KH billow or a Stuart 
vortex) have period L = 2 x / a  in the x-direction, Floquet theory dictates that the 
perturbations have the form 

u;(x,y,z,t) = zi,(x,z,t)exp[i(bs+dy)], 

Y(x, y , z , t )  = O(x,z,t)exp[i(bx+dy)], 

(3.3) 

(3.4) 
where 4% and 6 also have period L in the x-direction. Note that in this study we shall 
consider only transverse modes for which d = 0, although some comparison with the 
longitudinal modes discovered in earlier work (Klaassen & Peltier 1985b, c )  will be 
made. 

If the nonlinear states are steady, or vary sufficiently slowly compared to the 
perturbations, we may write 

4,(x, z,  t )  = ui(x, z )  est, 

O(x, z ,  t )  = 8+(x, z )  est, 

(3.5) 

(3.6) 

where s = u + iw, thereby transforming the initial-value problem into an eigenvalue 
problem. For a steady nonlinear state (such as the Stuart vortex), the exponential 
temporal dependence is exact, while in the unsteady case (e.g. KH waves), it is an 
approximation, the validity of which must be subject to a posteriori test. We must 
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discard modes that possess growth rates u = Re{s} that are not large compared with 
the rate of growth and decay of the nonlinear KH wave uKH, given by 

1 d K  
rKH = -- 

2K dt ' (3.7) 

where 

is the instantaneous kinetic energy of the nonlinear wave, and 

K = & 1; 1; p[(s, - ii# + G,"] dx dz (3.8) 

Substituting perturbation fields of the form (3.3) and (3.4) into the linearized 
Boussinesq equations yields the following set of stability equations : 

1 
Re 

s.8 + s,(a, + ib) UL + 4, a, UL + (a, 6,) U L  + (a, s,) ~f = - (a, + ib) pt + -L, w;, 

(3.10) 

(3.11) 
1 

Re 
S U ~  + 4,(i3, + ib) uf + C, a, u: = - idpi + - L, u:, 

(3.13) 

(a,+ib)u;+idu;+a,ul = 0, (3.14) 

1 
Re Pr 86' + c,(a, + ib) 6+ + sz a, 6+ + (a, S) U ;  + (a, 6) u~ = ~ L,  @, 

L,pt = ~ia,6~-2[(a ,6 , )  (a,+ib)u;+ ( a , s , ) a , ~ ~  
+ (ax i&) a, U: + (a, sz) (a, + ib) 41, (3.15) 

where the differential operator 

L, = (a,+ib)2+a,"-d2. (3.16) 

The eigensystem (3.10)-(3.15) is solved by expanding uL, uf, and 6+ on a Galerkin 
basis as follows : 

U K Z  m m  
u; = C C a,, eiAax cos - , 

,=-a v-0 H 
(3.17) 

U R Z  m m  

uf = C C b,, eiAa" sin r ,  (3.18) 
n ,=-m v-1 

(3.19) 

(Note that the pressure and spanwise velocity eigenfunctions have been eliminated 
as discussed in Klaassen & Peltier 1985b.) Substituting these Galerkin rep- 
resentations into the stability equations (3.10)-(3.15) and computating the inner 
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product of each equation with the complex conjugate of the appropriate basis 
function yields the following closed system of algebraic equations : 

scKp = I$\,, a,, +I$\, b,, + 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
V7t 

B, = hu+b, D, = -, A,, = Bi+D:+d2 
H 

where 

and summation over repeated indices is implied. 

dimensional fields onto the Galerkin basis, e.g. 
The interaction matrices I:$, consist of projections of the nonlinear two- 

2 L H  
I(6) K p A , - L H / o  - - I0 exp[- i (~-h)ux]sin (3.24) 

Once the expansions (3.17)-(3.19) are truncated a t  some finite values of the indices, 
the eigensystem may be solved by standard matrix eigenvalue techniques. By 
solving (3.20)-(3.22) at various instants in the K H  wave history we may identify the 
time of onset and duration of any secondary instability that the two-dimensional 
nonlinear wave might support, and obtain another means for assessing the physical 
importance of a particular mode of instability. Unless the growth rate is sustained for 
a sufficient length of time, the mode will not reach an amplitude large enough to 
significantly affect the evolution of the shear layer. Klaassen & Peltier (19853) 
showed that the expected amplification factor for a particular mode could be 
satisfactorily estimated by 

F = exp [JOT u(t) dt], (3.25) 

where [0, T] is the interval of non-vanishing u. 

4. Floquet theory and symmetry considerations 
The eigensystem defined by (3.10)-(3.15) possesses certain symmetries with 

respect to the Floquet exponent b. These may be summarized as follows. 
I. If s is an eigenvalue at (b ,  d )  with eigenvector {u:, u:, uf, Bt, p t )  then s* is also an 

eigenvalue at ( -  b , d )  with eigenvector {uL*, -ur, ud*, et*,pt*}. This may be 
established by putting b -F - b, u: + - u: and taking the complex conjugate of each of 
(3.10)-(3.15). 

11. The Floquet expansions (3.17)-(3.19), which are of the form 

are invariant under the transformation b -+ b +nu, where n is an integer. This follows 
from the periodicity of the Floquet coefficient fA(z + 27tn/a) = f,(z, z ) ,  and the 
infiniteness of the summation. 
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111. Properties I and I1 immediately yield 5(a- b ,  d )  = s*(b, d) .  These properties 
permit us to restrict our search of the eigenspace to 0 < b < +a. 

While the parameter d (which specifies the periodicity of the perturbation in the 
spanwise direction) may be interpreted as a wavenumber, the same is not true of the 
parameter b. Each value of b in the continuous range -;a < b Q +z corresponds to 
a discrete spectrum of wavevectors, and each component of this spectrum is 
displaced from a harmonic of the basic state wavenumber by an amount 6 .  
Furthermore, we note that the relative amplitudes of the components of this 
spectrum are determined by the eigensystem, so that the dominant streamwise scale 
of the perturbation is not necessarily given by 2nlb. 

The velocity fields of both Kelvin-Helmholtz waves and Stuart vortices obey the 
following symmetry : 

C,(nL-2,H-2) = -C,(x,z), (4.2) 

C,(nL-x,H-2) = -C,(x,z), (4.3) 

where L is the period of the nonlinear vortex and n is an integer. The potential 
temperature field e” of K H  waves obeys 

&nL-x ,H-z)  = &x,z) .  (4.4) 

As a consequence of these symmetries, the eigenmodes separate (for certain values of 
bla) into two distinct groups with even or odd parity under the operator Pg), defined 

(4.5) Pg){g(x, z ) }  = g(nL - x, H - z) .  by 

It may be shown that these symmetries lead to certain relations between the 
Galerkin coefficients defined in (3.17)-(3.19). Consider for example the x-velocity 
perturbation, which may be written in the form 

uj(x, z )  = C 2 a,” ei(ha+b)s cos ( v n z / H )  (4.6) 
A v  

with the y- and t-dependence suppressed. Disturbances with horizontal period nL are 
obtained when the ratio /? = b/a = m/n is rational (m and n are integers with no 
common factors). By applying P g ’ u j  = +{uk} it may be shown that 

a,, = k ( - 1)” U-(h+zm,n) ,  Y (4.7) 

The relation (4.7) can be satisfied only when A+2m/n  is an integer, i.e. p = 0 or 
&+. Thus if b = 0 then 

a,, = +(-1)”a-,”, (4.8) 

while a,” = +(-l)’a-A-l,v (4.9) 

for b = fa. These relations should be taken into account when formulating the 
truncation scheme for the expansions (3.17)-(3.19). For the case b = +, which is of 
particular interest in the present paper, any truncation scheme that retains 
coefficients with A = A, while discarding those with A = -A, - 1 violates the 
symmetry requirements. It will be demonstrated in what follows that such violations 
can lead, in certain cases, to  serious errors in the solution of the eigensystem. 

Klaassen & Peltier (1985 6 )  employed a modified triangular truncation scheme 
of the form 214 + v < N in their investigation of longitudinal modes of instability 
( b  = 0). This scheme may be generalized to 

21A+b/aJ+v < N  (4.10) 

for non-zero b. However, since Ibl < fa and u and N are integers, (4.10) yields only 
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three different truncation schemes, those corresponding to /3 = b/a = t ,  0, and - t .  
For 0 < Jbl < ;a neither of the relations (4.8) or (4.9) between the Galerkin coefficients 
hold and there is no a priori rational basis for choosing one scheme over another. The 
most suitable scheme must be determined empirically by means of convergence 
tests. 

5. Stability of Stuart vortices with respect to transverse disturbances 
The problem of the stability of Stuart vortices has been addressed previously by 

Kelly (1967) for small amplitude and by Pierrehumbert & Widnall (1982) for 
arbitrary amplitude. The results to be presented in this section augment these earlier 
analyses. For purposes of comparison, the lengthscale we employ is half that used by 
Pierrehumbert & Widnall. Consequently a growth rate r in our units corresponds to 
a value 2 r  in their units, while a Floquet parameter b in our units translates to a 
value 26 in theirs. 

Figure 3 illustrates the stability of the Stuart vortex of amplitude A = 0.1 
with respect to infinitesimal two-dimensional perturbations of arbitrary Floquet 
parameter. Our analysis reproduces the growth rate of the ‘pairing ’ instability 
(b  = $a,) obtained by Pierrehumbert & Widnall (1982). However, figure 3 clearly 
demonstrates the presence of an additional (more slowly growing) mode not reported 
by them. The existence of this mode was first recorded in Klaassen & Peltier (1987). 
The results presented here will elucidate the nature of this instability and permit us 
to introduce the name ‘vortex draining’ for the mode. It is also evident in figure 3 
that the pairing and draining instabilities each represent the most rapidly amplified 
components in what are evidently continuous spectra and that the bandwidth of 
each amalgamation instability is comparable with that of the primary parallel flow 
instability. (Note that Pierrehumbert & Widnall (1982) did not investigate the 
stability of transverse Perturbations with b + +,.) 

The rather broad bandwidth of merging instability is of some physical significance. 
Modes with JbJ < +a, in the spectrum contiguous to the pairing instability can lead to 
the collective amalgamation of more than two vortices. For example, amalgamation 
modes with b = $a, and b = -ia, (or b = ;a, according to 111) constitute tripling 
interactions in which three vortices may combine to form either one or two. (Since 
u: = 0, disturbances having b < 0 are identical to their counterparts having Floquet 
parameter equal to lbl.) We may write the Floquet parameter in the form b = na,/m, 
where n and m are positive integers possessing no common divisors and nlm < f. 
For the transverse unstable modes of the Stuart vortex shown in figure 3, roughly 
98 % of the kinetic energy is contained in the components having wavenumbers 
L = b = na,/m and k = b - a, = - (m- n)  a,/m. This characteristic implies that these 
disturbances will act to reduce the number of vortices in the horizontal distance 
27cm/a, from either m to n or from m to  m-n. For the case m = 2, the only possible 
result is n = m-n = 1, while for m = 3, either one or two vortices may result. The 
mechanism that determines the outcome for m > 2 will be investigated further in 

Our analysis indicates that  the probability of a particular amalgamation process 
occurring in an unforced shear layer decreases as the ratio of the minimum number 
of possible survivors to the number of initial participants decreases. This is consistent 
with the fact that frequent pairing, and infrequent tripling interactions have been 
observed in unforced plane mixing layers by Hernan & Jimenez (1982). (Hernan & 
Jimenez have reported that the number of pairings in their experiments exceeds the 

§ 7. 
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I I I I 

p = 0  N=23 
I I 

D 
b b 

FIQURE 3. Growth rate u us. Floquet parameter b for the Stuart vortex of amplitude A = 0.1. 
Convergence properties are shown for truncation schemes with /l = b/a, = 0 and #; individual 
curves are labelled with the value of the truncation parameter N .  A complete period of b (0 6 b < 1) 
has been shown to illustrate the lack of symmetry about b = $as = 8 for the scheme defined by 
/l = 0. Solid curves represent orbital-merging instability while dashed curves correspond to vortex- 
draining instability. Both instabilities have non-oscillatory temporal dependence (w = 0). The most 
accurate growth rates are for /I = i and N = 23. 

number of triplings by an order of magnitude.) Our i-esults are also consistent with 
those of Ho & Huang (1982) who have observed similar processes as well as 
quadrupling interactions in a forced shear layer. In their experiments the number of 
vortices participating in the amalgamation process varied with the applied forcing 
frequency. Forcing at the first subharmonic was found to favour pairing while forcing 
a t  the second subharmonic favoured tripling, etc. 

The fact that modes close to b = ;as possess nearly the same growth rate as the 
pairing mode itself means that these modes have a relatively high probability of 
being realized. Such modes are associated with a lack of sharpness (finite quality 
factor ‘ Q ’ )  of the vortex merging ‘resonance ’. For example the mode with b = &as, 
which has nearly as large a growth rate as the mode with b = ;a,, would produce a 
row of vortices having wavelength A = 2.29As rather than A = 2As. 

Figure 3 contains growth rate curves obtained using two different truncation 
schemes, respectively given by 

214 + v < N (/3 = 0 )  (5 .1)  

and 21A+#+v < N (/3 = i). (5 .2)  

The effectiveness of these two truncation schemes has been tested by examining the 
convergence characteristics for each as the truncation level N is assigned the values 
15, 19 and 23. The growth rates of the amalgamation modes (solid curves) show little 
variation with truncation level and scheme, indicating that convergence is achieved 
for this instability. However, the choice of truncation scheme has a significant 
impact on the growth rates associated with the draining modes (dashed curves). For 
example, there is some disparity in the instability bandwidth predicted by the two 
schemes. The scheme /3 = $as predicts a draining mode bandwidth that is nearly as 
large as that of the amalgamation instability, and that this bandwidth is essentially 
independent of truncation level. Conversely the scheme p = 0 predicts a draining 
mode bandwidth that is considerably narrower. However, the predicted = 0 
draining mode bandwidth increases as the truncation level is increased, indicating 
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10 

I I t  I 
0 4x 0 4x 

FIQURE 4. A superposition of the (a )  pairing and ( b )  draining eigenfunctions ( b  = t )  with the 
nonlinear vorticity field ( A  = 0.10), shown for two periods of the Stuart vortex. The amplitude of 
the perturbation vorticity was set to a value 0.25 times the maximum vorticity in the nonlinear 
field. 

that the p = scheme with N = 23 gives the best estimate of vortex-draining 
instability growth rates. 

The eigenfunctions associated with the two unstable transverse modes of the 
Stuart vortex for A = 0.1 and b = +as have been superimposed on the nonlinear basic- 
state vorticity field and displayed in figure 4. The mode in (a )  moves the left-hand 
nonlinear vortex up and to the right, while moving the right-hand vortex down and 
to the left. This motion is consistent with the characteristic orbital motion seen in 
experiments and simulations of merging vortex pairs, and corresponds to the pairing 
mode found by Pierrehumbert & Widnall (1982). The additional mode revealed by 
our analyses lengthens, amplifies and tilts the right vortex, while shortening and 
depleting (or draining) the left. Hence we have chosen the name draining instability 
to describe it. The vorticity fields and stream functions associated with the pairing 
and draining instabilities are shown in figure 5.  Evidently the sharp vorticity 
gradients near z = iH  and x = 0, A, are responsible for the slow convergence of the 
draining mode. The high truncation required to resolve the draining mode could 
provide an explanation of why Pierrehumbert & Widnall (1982) did not report its 
occurrence, since they employed a considerably lower maximum truncation level 
(N = 8) than in the present study (N = 23). 

We note that the overall structure of the two b = h, modes is essentially similar 
except for a phase shift by one quarter of the subharmonic wavelength in the 
horizontal direction, and that each resembles an unstable mode of a parallel flow 
having a hyperbolic tangent velocity profile. For pairing instability, the long-wave 
vortex core is centred midway between the short-wave cores, while for draining 
instability, the centre of the long-wave core is coincident with the centre of the short- 
wave core that is favoured for growth. It is important to recognize that pairing and 
draining represent interactions that lead to the merging of vortices through 
distinctly different routes. In  order to distinguish these two different amalgamation 
processes, we propose that the branch of unstable modes that contains the pairing 
interaction be referred to as ' orbital merging ', while the branch containing the 
draining interaction be referred to as ' deformational merging '. This nomenclature 
explicitly recognizes the dominance of vorticity in the former process and the 
dominance of rate of strain in the latter. 

Figure 6 shows the effect of Stuart vortex amplitude on the orbital and 
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FIGURE 5. Eigenfunctions for the pairing and draining modes ( b  = t )  of the Stuart vortex with 
amplitude A = 0.1. Pairing (a )  stream function and ( 6 )  vorticity field. Draining (c) stream function 
and (d )  vorticity field. Solid lines represent positive contours, dashed lines represent negative 
contours. Only the first half-period has been shown in each case. 

deformational merging instabilities for Floquet parameters b = :as and b = ;a,. 
Growth rates associated with orbital merging increase slightly as the nonlinear 
vortex amplitude increases, while those for deformational merging are rapidly 
diminished by increases in vortex amplitude. It has been argued (Pierrehumbert & 
Widnall 1982 ; Corcos & Sherman 1984) that the closest correspondence between the 
Stuart vortex and the nonlinear disturbances actually observed in free shear layers 
is obtained for 0.25 < A < 0.6, a range for which orbital-merging growth rates are 
large and deformational-merging growth rates are small. Thus it is tempting to 
promote this disparity in growth rates as an explanation of why vortex draining is 
observed less frequently than orbital pairing. (Hernan & Jimenez 1982 refer to it as 
a slow ‘bleeding ’ process which constitutes 10 YO of all merging interactions.) 
However, one must keep in mind the caveats outlined earlier concerning the 
substantial structural differences between the Stuart vortex and more realistic 
nonlinear disturbances. The role played by vortex draining in the evolution of real 
shear layers will be considered further in what follows. 

Figure 6 also provides a comparison of our amalgamation growth rates for the 
Stuart vortex with two limiting cases that have been examined previously in the 
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FIGURE 6. Growth rate us. Stuart vortex amplitude for Floquet parameters b = $, t. Pairing growth 
rates increase slightly as vortex amplitude is increased, while the draining mode is rapidly 
stabilized by increasing amplitude. The dashed lines marked ( a )  and ( e )  denote the pairing and 
quadrupling growth rates, respectively, given by Lamb (1932) for a point vortex (the limit A + 1 
in the present context). The growth rates associated with instability of hyperbolic tangent parallel 
flow ( A  = 0) are shown for ( b )  b = and (c) b = a. The line ( d )  denotes t’he prediction of Kelly (1967) 
for resonant growth of the first subharmonic of the Stuart vortex. 

literature. Our theory in the limit A + 1 provides a rather close correspondence to the 
growth rates cr = a( 1 -a )  predicted by von KarmQn’s analysis of the stability of a 
row of like-signed point vortices (Lamb 1932), as illustrated for 01 = f and in figure 
6. On the other hand, the small-amplitude resonant interaction theory of Kelly 
(1967) predicts a value of da/dA = 0.9648 for Stuart vortex pairing as A + 0, which 
is significantly larger than the value 0.50 given by our analysis. Furthermore, Kelly’s 
calculations indicated that orbital merging instability would be confined to a rather 
narrow band of wavenumbers centred on the subharmonic and having order-A 
width. This result clearly differs from the order-1 bandwidth given by our calculation 
(see figure 3). Possible explanations for these differences will be discussed in $8. 

6. The stability of Kelvin-Helmholtz billows with respect to transverse 
disturbances 

Klaassen & Peltier (1985a) showed that, after reaching maximum amplitude, a KH 
wave in the absence of subharmonic growth oscillates about a state for which the net 
Reynolds st.ress, 6, given by 

vanishes. The rather small KH wave growth rates (see (3.7)) that obtain during this 
later period are comparable in magnitude with the frequency with which parcels of 
fluid orbit the vortex core, and t,herefore represent a reliable measure of the deparhre 

13 1:I.N 3k! 
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FIGIJRE 7 .  Growth rate vs. Floquet parameter for transverse unstable modes of the first zero 
Reynolds stress K H  wave stsate ( t  = 40.3): ( . . . . )  deformational merging, (-) orbital merging. 
The instabilities shown are non-oscillatory (w = 0) .  

from stationarity . This oscillatory behaviour, which has become known in the 
literature as vortex nutation, has important implications with respect to the stability 
analysis. The criterion cr 9 vKH effectively restricts consideration of stability 
properties to times after (and shortly before) the nonlinear wave attains maximum 
kinetic energy. The first state for which ( = 0, hereafter referred to as the key time 
( l ) ,  occurs very shortly after maximum KH wave amplitude is attained. The 
stability characteristics of this state represent a logical point to begin our discussion. 

Figure 7 reveals that  the KH wave at key time (1) is unstable with respect to two 
distinct classes of transverse non-oscillatory unstable modes. The growth rate of the 
fastest growing mode shows little variation with Floquet parameter 6 ,  while the 
growth rate of the other mode exhibits a distinct maximum at the first subharmonic 
b = ;aKH. The eigenfunctions corresponding to the more slowly growing of the two 
modes are illustrated in figure 8 for b = $uKH. Comparison with the corresponding 
unstable modes of the Stuart vortex (see figure 5) indicates that  the stream function 
of this particular instability has the spatial structure and phase required to induce 
pairing of neighbouring KH vortex centres. Note that the vorticity eigenfunction 
shows a considerably more intricate spatial structure than the corresponding Stuart 
vort'ex eigenfunction (figure 5 ) .  That this detailed structure is indeed associated with 
the KH wave pairing will be demonstrated in $7 .  

It is worth mentioning that, for the maximum truncation level accessible in the 
stratified case (N = 19), the /3 = $ truncation scheme (5.2) was needed to provide 
reasonable convergence of eigenvalues and eigenfunctions. The failure of the /3 = 0 
scheme (5.1) to produce adequate convergence may be understood as follows. The 
vorticity field of the pairing eigenfunction consists of alternating thin layers of 
positive and negative vorticity, a structure represented by Galerkin coefficients a,, 
with small JhJ and large u. The /3 = 0 scheme sets a-l, as a = 0 while retaining a,,, 
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FIQURE 8. (a) Stream function, ( b )  potential temperature and (c) vorticity eigenfunctions for 
pairing mode ( b  = hKH, d = 0) a t  the time the net KH wave Reynolds stress first vanishes 
( t  = 40.3). The horizontal domain L corresponds to two KH wavelengths (vortex centres are located 
at +L and iL).  

free parameter, so that the symmetry requirement u - ~ ,  = & ( - l)N a,,, N ,  (4.9), cannot 
be satisfied when a,,, 

The broad bandwidth of the KH orbital merging modes shown in figure 7 
demonstrates that  tripling, quadrupling, higher-order and intermediate amal- 
gamations are possible in principle (e.g. if the spectrum of background noise is biased 
in their favour). On intuitive grounds, one would expect no amalgamation in the 
limit b+O, as was found in the Stuart vortex case. In  the K H  case, however, a 
positive value of u is found a t  b = 0. This apparently unphysical prediction is 
explained by the fact that the stability properties of the K H  amalgamation mode 
cannot be reliably determined for b < ;aKH (the dashed portion of the curve in figure 
7) ,  simply because the growth rates are not large compared with temporal variations 
in the KH wave. 

Eigenfunctions corresponding to the most unstable transverse mode of the KH 
wave a t  key time (1) are shown in figure 9 for the case b = 0. This mode is composed 
of a highly localized counter-rotating vortex doublet (i.e. a dipole distribution) that 
tends to distort the KH wave braid in the vicinity of the stagnation point. The fact 

still has appreciable magnitude. 

13-2 
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FIGURE 9. (a) Potential temperature and ( b )  vorticity eigenfunctions for the braid instability 
( b  = 0 ,  d = 0) at the first occurrence of zero K H  wave Reynolds stress ( t  = 40.3). The horizontal 
domain length L corresponds to  two K H  wave periods with vortex centres located at iL and $L. 

that the growth rate of this disturbance is nearly independent of the Floquet 
parameter b simply indicates that, variations in structure may occur from one braid 
to the next in the periodic train of K H  billows without significantly affecting the 
overall growth of the instability. For example, the unstable mode having b = +uKH 
is very similar in character to the case b = 0 shown in figure 9, except that the sign 
of alternating vortex doublets is reversed. Evidence for the realization of this in- 
stability may be seen a t  t = 63.4 in the nonlinear simulation documented in figure 1 
(see also figures 7 ,  8 and 9 of Klaassen & Peltier 1985~) .  It is therefore possible that 
this mode is responsible for the small-scale wave-like distortions of KH braids 
observed by Thorpe (1968) in the laboratory and Woods (1969) in the ocean. These 
observations have traditionally been attributed to a secondary Kelvin-Helmholtz 
instability originating in the braids. 

However, the braid instability that we have discovered here differs from local KH 
instability in several important respects. For example, only one ‘wavelength ’ is 
realized, even though the braids appear to possess uniform structure over a distance 
approximately three times this length. More significantly, the KH eigenfunction 
consists of a quadrupolar vortex, corresponding to a deformation field that 
alternately compresses and expands the interface along its length. In contrast, the 
dipolar vortex structure of the braid instability discovered here initially induces a 
more or less uniform sinusoidal displacement of the interface. We cannot exclude the 
possibility that secondary KH instability of the braids may arise for values of the 
flow parameters that differ significantly from those considered in the present study. 
However, the braid instability mechanism revealed by our analyses clearly provides 
a plausible explanation for the observations of Thorpe and Woods, especially since 
the Reynolds and Richardson numbers characteristic of the flows in their studies are 
close to the values employed in the present model. 

The fact that the instability of figure 9 appears to be associated with the stagnation 
points located at  the midpoints of the braids of the nonlinear wave invites 
comparison with the stagnation-point instability found by Craik & Criminale (1986). 
These latter disturbances are Kelvin modes that arise from a constant deformation 
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FIGURE 10. The effect of the evolving KH wave on secondary instabilities: ---, the nonlinear 
KH wave (rKH); -, pairing instability ( b  = $zK,, d = 0);  0 0 0 ,  braid instability ( b  = 0, 
d = 0) ;  0 0 0 ,  braid instability (b  = +aKH, d = 0) ;  -.-.-, longitudinal convective instability 
( b  = 0, d = 3.0); x x x , secondary global KH instability (b  = 0, d = 3.0); + + +, vortex- 
draining instability ( b  = +aKH, d = 0). Zero net KH wave Reynolds stress occurs at  key times ( 1 )  
t = 40.3, (2) 63.4, and (3) 83.5 as marked by the vertical dashed lines. 

field and are periodic along the axis of dilatation, whereas the disturbance we have 
found is an unstable normal mode that arises from a non-uniform deformation field 
and is localized to the vicinity of the stagnation point. 

Figure 10 depicts the variation of the growth rates of several secondary modes of 
instability as the primary KH flow evolves. The rate of growth gKH associated with 
the amplitude of the nonlinear billow has been provided (long dashes) as a reference 
for judging the applicability of our assumption concerning the existence of a 
separation between the temporal scales associated with the primary and secondary 
disturbances. The vertical dashed lines in figure 10 represent the first three successive 
instants a t  which the net Reynolds stress = 0, and respectively define the first three 
key times. 

The pairing mode (b  = $xKH) shows very little variation with time, indicating that 
this instability is relatively insensitive to temporal variations in the KH wave. On 
the other hand, the braid instability (shown for both b = 0 and b = +aK,) is very 
sensitive to temporal variations in the KH wave, peaking near the key time (1)  and 
decaying before the key time (2). This contrasting behaviour may be understood on 
the following basis. The pairing mode responds to the large-scale structure of the 
periodic train of billows, which changes very slowly in these simulations. The 
imposed domain length L = A,, prevents the occurrence of pairing. However this 
restriction does not prevent the realization of the braid instability, which achieves a 
rather small saturation amplitude and then decays. This decay is brought about by 
nonlinear interactions which destroy those properties of the braid that originally 
caued the excitation of the secondary instability. Thus the decay of the braid 
instability’s growth rate revealed by our linear theory is simply a measure of this 
nonlinear modification of the flow in the vicinity of the stagnation point. The 
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characteristics of the transverse braid instability documented both in our nonlinear 
simulations and our linear stability analyses indicate that, in the region of parameter 
space considered here, it is responsible only for a temporary distortion of a highly 
localized region of the flow. 

Figure 10 provides evidence for two further instabilities that  occur after the key 
time (2). The more slowly growing of the two modes (shown here for b = $aKH) has 
the same stream-function structure and phasc as the vortex draining instability 
encountered in our analysis of the stability of Stuart vortices. As in the Stuart vortex 
case, the fastest growing mode in the continuous spectrum of draining instability 
occurs a t  b = $aKH and growth rates vanish in the limit b + O .  The mode with the 
larger growth rate (shown here for b = 0) actually forms a continuous part of the 
branch associated with pairing instability. We note that the limit b + 0 is singular in 
the sense that perturbations with b = 0 have the same period as the fundamental 
wave, while perturbations having small Ibl possess periods that are many times 
larger. The mode with b = 0 shown in figure 10 has eigenfunctions that closely 
resemble those of the primary KH instability. Thus it appears that this mode 
corresponds to a secondary global KH instability. Both the vortex draining and 
secondary global KH instabilities have a growth rate that is somewhat lower than 
that associated with pairing and both arise considerably later than the amalgamation 
instabilities. Thus they are not likely to be of much physical consequence in this 
particular flow. 

Figure 10 also contains the history of the growth rate associated with the most 
unstable longitudinal mode of the KH wave. This mode, which was described in 
detail by Klaassen & Peltier (1985 b ) ,  is inherently three-dimensional and corresponds 
to a Floquet parameter of b = 0 and a spanwise wavenumber of d = 3.0. It consists 
of non-oscillatory (o = 0) convection rolls aligned in the direction of the mean shear 
and confined to regions of the vortex core in which the initially stable stratification 
has been overturned. The instability is initiated a short time before the KH wave 
attains maximum amplitude and decays before the key time (2). We note that for the 
particular flow parameters considered here the growth rates associated with this 
instability are nearly twice as great as those found for the pairing or braid 
instabilities. 

The existence of a complex variety of instabilities raises the following question : 
will any one of these instabilities dominate the subsequent flow evolution, or will each 
be able to proceed more or less independently? For example, a rapidly growing 
instability could, through nonlinear processes, modify the KH flow in such a manner 
as to curtail the realization of instabilities that grow less quickly or are initiated a t  
a later time. For the values of the flow parameters employed in this study it appears 
that the braid instability will have a t  most a temporary and somewhat minor impact 
on the flow in a small region near the stagnation points. On the other hand both the 
amalgamation and convective instabilities are expected to profoundly affect 
subsequent flow evolution, the former by increasing the vertical extent of the shear 
layer, and the latter by leading to the onset of turbulence. The convective 
instability constitutes a rapid response to a feature of the flow that eventually 
dissipates (namely the first statically unstable region produced by the overturning 
billow), while the pairing mode constitutes a somewhat weaker response to a longer- 
lived feature of the flow (the periodic concentration of vorticity). 
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7. Two-dimensional nonlinear simulations of vortex amalgamation 
In  this section we examine the nonlinear evolution of KH waves when the 

horizontal domain length of the numerical model is set to L = 2hKH and 3hKH. This 
permits the growth of subharmonic wave components that are responsible for vortex 
merging. Such simulations are employed here to verify the results of our linear 
stability theory, to investigate the sensitivity of the pairing process to initial 
conditions, to study the flow behaviour after merging is completed, and to simulate 
tripling interactions. 

In  order to quantify our results, we find i t  convenient to  partition the kinetic 
energy of the nonlinear wave into components that may be associated with 
particular wavenumbers in the Fourier spectrum of the wave. We define these Fourier 
components according to 

l L  
u ( k ,  z ,  t )  = jo i&(x, z ,  t)  ePikz dx, (7.1) 

(7 3 &(x, z ,  t )  e-ilrz dx, 

where k = na, a = 2rc/L, n = 0 , 1 , 2 ,  ... $(N- l ) ,  andNis the number of horizontal grid 
points employed in the finite-difference model. The kinetic energy of the component 
with wavenumber k is then defined by 

and the total kinetic energy is given by 

(7.3) 

(7.4) 

where the summation has been truncated in accord with the finite resolution of the 
model. E(O), E($xKH), and E(aKH)  correspond to the energies associated with the 
mean, subharmonic, and fundamental components of the flow. The amplitude 
growth rate for the component with wavenumber k is given by 

In what follows, we shall see that the time of onset and other characteristics of 
vortex merging are very sensitive to the flow history that precedes the nonlinear 
development of the primary wave. In  order to quantify these effects, we must 
establish a criterion for the onset of nonlinear effects, as well as a criterion for 
distinguishing between forced and unforced shear layers. A linear stability analysis of 
the initial parallel flow specified by (2.1)-(2.3) dictates that the only unstable modes 
that can be excited in a system with horizontal period L = 4n/aK,  = 2hKH are those 
with wavenumbers +aKH, aKH and $aKH. (All other Fourier components of the 
disturbance lie outside the range of unstable modes 0 < a 5 2aKH.) Figure 11 
illustrates the evolution of E ( k )  and u ( k )  for each of these three components in a 
2hKH domain length simulation initiated with a white-noise field superimposed on 
the parallel flow such that E ( k  + 0) - loP5 a t  t = 0. At first all components decay. 
However growth rates for k = $aKH, aKH, and $aKH increase rapidly until the 
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FIGIJRE 11. Evolution of (a )  the kinetic energy and ( b )  the growth rate associated with the Fourier 
components k = +aKH (-), aKH (---), and sa KH ( .  . . . . ), for a nonlinear simulation in which white 
noise having spectral kinetic energy density E ( k )  2 LOP is superimposed on the initial pardlel flow. 
(The model domain length is equal t o  2hKH.) 

values dictated by linear stability theory are respectively attained. A t  these 
individual times the components have ‘locked on ’ to the appropriate eigenfunctions. 
Thereafter, thv a ( k )  decrease a t  rates that are dictated by visrous diffusion of the 
mean flow. 

Mean flow diffusion acts to increase the depth of the shear layer, and effectively 
shifts the entire unstable spectrum (including the fastest growing mode) to longer 
wavelengths. Thus, if the ‘initial ’ disturbancc is sufficiently small and the viscosity 
is sufficiently large, mean flow diffusion can shift the dominant wavelength of the 
growing disturbance to substantially larger values before nonlinear effvcts become 
important. In  the absence of evidence to the contrary it is reasonable to expect that 
the disturbance with largest amplitude a t  the time nonlinear effects become 
important will be the one to impose its wavelength on the shear layer. This 
hypothesis is given some credence by the fact that mean flow diffusion is substantially 
reduced by the emergence of a strongly nonlinear wave (see figure 1 of Klaassen & 
Peltier 1985a). 

In  order to achieve the closest possible correspondence with the physical processes 
occurring in unforced natural flows, it is therefore necessary to initialize a numerical 
simulation with the amplitude of the fastest-growing mode of the parallel flow set to 
a value slightly smaller than that required to induce nonlinear effects. The amplitude 
corresponding to this nonlinear threshold may be determined from figure 11. At time 
t = 50 the growth rates for the subharmonic and fundamental decrease rather 
sharply, and a($,,) abruptly increases. This behaviour indicates that the amplitude 
of the fundamental is large enough to introduce significant nonlinmrity into the 
layer. We have been able to identify E(ol,,) % lo-’ as the critical threshold for the 
onset of nonlinear effects over a fairly broad range of Reynolds number (10’ < Re < 
lo3). Consequently, an initial value of E(cr,,) x 2 x lop3 was chosen for thc 
remainder of our simulations. The corresponding initial valucs for E($a,,) and 
E($a,,) may vary considerably, depending on the shape of the particular spcvtrum 
of noise responsible for exciting the instability. As a specific example of the values 
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to be expected, the simulation shown in figure 11 gives E(ia,,) = $$(aKH) (an 
amplitude ratio of 1 : 7 )  and E(;a,,) = &$(aKH) (an amplitude ratio of 1 : 14) at  the 
time when E(a,,) = 2 x lop3. 

It is important, however, to recognize that there is an upper limit to the ratio 
E(iaKH)/E(aKH) that may be expected to occur in an unforced shear layer. Clearly, 
the time required for an individual Fourier component to lock on to the corresponding 
growing eigenfunction must be inversely proportional to the growth rate, Figure 11 
illustrates this concept quite nicely : the fastest-growing mode k = aKH is the first to 
lock on, while the components k = $ a K ,  and k = $ a , ,  (which have nearly equal 
growth rates) simultaneously lock on at  a somewhat later time. The data in figure 11 
indicate that, owing to the difference in lock-on times, E(a,,) amplifies by a factor 
of about 10 before the subharmonic even begins to grow. We have verified that this 
threefold gain in the amplitude of the fundamental relative to the subharmonic is 
insensitive to the amplitude of the initial noise field in the linear regime, and thus 
constitutes a lower bound for the value of [E(aKH)/E($aKH)]i  that can be expected a t  
the nonlinear threshold in an unforced layer. (Observational evidence (e.g. Ho & 
Huang 1982; Miksad 1972) indicates that this amplitude ratio is often as high as 30 
in unforced free shear layers.) In recent numerical simulations of the pairing process 
in unstratified free shear layers, Corcos & Sherman (1984) have employed an initial 
amplitude ratio of 1 : 2 between the subharmonic and the fundamental. According to 
our criterion, these latter simulations correspond to a forced shear layer and 
therefore favour the early onset of pairing. 

Figure 12 demonstrates the effect that 'forced ' and 'unforced ' initial conditions 
have on the timing of the pairing process. Both simulations have the initial kinetic 
energy of the fundamental E,(a,,) = 2 x a value slightly smaller than that 
required to induce significant nonlinear effects. For the forced simulation shown in 
figure 12 (a), we employed the initial values 

' O ( i a K H )  = E O ( $ a K H )  = i E O ( a K H )  (7 .6)  

(similar to the values employed by Corcos & Sherman 1984), while for the unforced 
simulation of figure 12 (b )  we imposed the initial values 

' O ( i a K H )  = 'O(%'KH) = h E O ( O I K H ) .  (7.7) 

For the forced initialization (7.6), the fundamental KH disturbance is barely able to 
impose its own identity on the flow before it is overwhelmed by subharmonic growth. 
In  contrast, the fundamental mode in the unforced simulation dominates the flow for 
a considerable length of time before the nonlinear effects of pairing become 
evident. 

Both simulations shown in figure 12 were initialized with k = :aKH and $aKH 
eigenfunctions of the parallel flow adjusted so that their phases matched those of the 
respective components of the pairing eigenfunction shown in figure 8. In  an unforced 
shear layer these waves arise out of random noise so that their relative phases are 
arbitrary, a t  least in the small-amplitude regime. Thus the particular phases chosen 
for the simulations shown in figure 12 both favour the early onset of the pairing 
process. To test the sensitivity of the onset of pairing to the initial phase of the waves 
with k = $aKH and k = $aaKH we have performed several additional simulations. 

In  figure 13 we display the evolution of E ( k )  for an 'antipairing' initialization in 
which both the k = +aOIKH and the k = $aKH waves are directly out of phase with the 
respective components of the pairing eigenfunction, a $ 7 ~  phase shift in each case. For 
this simulation, the initial amplitudes were set according to the unforced values (7.7). 
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FIGURE 12. Evolution of the kinetic energy E ( k )  for nonlinear simulations having L = 2AKH. 
Growing eigenfunctions with relative kinetic energies given by E(ia,,) :E(aKH):E($aKH) = (a)  i: 1 : 
+(see (7.6)) and ( b )  &: 1 :& (see ( 7 . 7 ) )  are superimposed on the initial parallel flow. k = +aKH (-), 
aKH (---) , 3 paKiL ( .  . . ) .  Initial relative phases are adjusted to match those associated with the 
pairing instability. 
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FIGTJRE 13. Evolution of the kinetic energy E ( k )  for a simulation in which the initial phases of the 
k = $a,, and k = $aKH waves are shifted by radians relative to the values required for pairing 
instability. E($a,,) (-), and E(aKH)  (---). Initial disturbance amplitudes as for the simulation 
in figure 12(b)  (see ( 7 . 7 ) ) .  

In the unstratified steady Stuart vortex case such a linear disturbance would tend to 
induce vortex-draining instability. However, for a KH wave with initial stratification 
given by Ri = 0.07, draining instability onsets very late in the wave history (after the 
key time (2) in figure 10). Thus, directly after the fundamental mode crosses the 
nonlinear threshold, the imposed initial subharmonic does not project onto any 
unstable mode of the nonlinear primary wave, and the subharmonic kinetic energy 
E(ia,,) begins to decay. After a considerable lapse of time, however, the 
subharmonic does eventually begin to grow. An examination of the vorticity and 
potential temperature fields shows that this late subharmonic growth is associated 
with pairing instability rather than vortex draining. 

This result can be better understood by examining the evolution of the horizontal 
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FIGURE 14. Evolution of the central phase (k) of the stream function for the simulations shown in 
(a) figure 12(b) ,  and (b) figure 13. k = +aKH (-) and k = aKH (---). 

phase &(z , t )  of each Fourier component of the stream function $. We define this 
phase according to 

(7.8) $(x, z,  t )  = C $.,(z, t )  ei[kz+4k(z,t)l. 
k 

Of particular interest is the phase a t  the centre of the shear layer, namely, 

$(k) $& = +H, t ) .  (7.10) 

The evolution of this central phase for simulations initialized with both pairing and 
antipairing phases is shown in figure 14. For the pairing-phase initialization (figure 
14a), the phase of the subharmonic remains constant for all time. (It is worth 
mentioning that the rapid reversal in the phase of the fundamental that  occurs at 
t = 65 exactly coincides with the onset of nonlinear effects in the pairing process.) For 
the antipairing initialization (shown in figure 14b) the phase of the subharmonic 
remains near the value +IT until t = 50 and then begins a steady migration toward the 
value required for pairing. (Note that either q5(iaKH) = 0 or n can lead to pairing. A 
phase shift of IT radians only selects the right- or left-hand neighbour of a particular 
vortex to engage in the merging process.) By t = 70, the subharmonic phase has 
migrated far enough for pairing instability to take over. According to figure 10, this 
process is completed well before the onset of vortex-draining instability, so that the 
outcome is orbital rather than deformational merging. 

The outcome of our antipairing simulation (figure 13) differs from the cor- 
responding simulation performed by Patnaik et al. (1976) for the same value of the 
stratification (Ri = 0.07). In  their simulation, setting the initial subharmonic 
component directly out of phase with respect to the pairing eigenfunction led to a 
‘shredding interaction ’ in which both the fundamental and the subharmonic decayed. 
From their figure 16, the subharmonic amplitude apparently never exceeds that of 
the fundamental during this process. This rather different outcome is evidently due 
to the lower Reynolds number (Re = 50) employed. 

An antipairing simulation has been performed by Riley & Metcalfe (1980) for the 
case of an unstratified shear layer (see also the review by Ho & Huerre 1984). This 
simulation produced an interaction in which the vorticity of one of the fundamental- 
mode cores was gradually transferred along the developing large-scale braid to its 
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nearest neighbours. Recall that the vortex-draining instability revealed by our 
linear stability analyses of Stuart vortices was found to produce a similar interaction 
(see figures 3 and 4 and the relevant discussion in $ 5 ) .  Thus Riley & Metcalfe’s 
nonlinear simulation provides direct evidence that vortex-draining instability may 
be excited in unstratified shear layers, although we note that the initial relative 
amplitude of the subharmonic and fundamental they employed was characteristic of 
a forced layer (see their figure 15). Our stability analyses have shown that 
deformational merging interaction is due to a supercritical Hopf bifurcation that is 
closely related to orbital vortex merging, and our nonlinear simulations have shown 
that it is not likely to play a significant role in the evolution of moderately stratified 
free shear layers. 

If the initial subharmonic phase is set to a value intermediate between the pairing 
and antipairing values, vortex merging begins a t  some time later than in the 
simulation shown in figure 12(b) and at  some time earlier than in the simulation 
shown in figure 13. Further simulations (not shown here) have demonstrated that the 
relative phase of the component k = :aaKH can also play a role in determining the time 
at  which pairing onsets. If one matches the initial $(%a,,) to the pairing value and 
shifts the initial #(+aKH) to the antipairing value, the interaction between the 
components k = aKH and k = :aKH generates a subharmonic component with the 
phase required to excite pairing instability. In  this case the onset of pairing 
significantly precedes that observed in figure 13. The evidence we have accumulated 
is consistent with the concept that it is the projection of the disturbance field on the 
pairing eigenfunction a t  the time nonlinear effects first become important in the layer 
that ultimately determines the time a t  which the subharmonic amplitude surpasses 
that of the fundamental. The simulations shown in figures 12(b) and 13 give rough 
indications of the lower and upper temporal limits for the onset of pairing in an 
unforced shear layer. The rather large variability in the onset of vortex pairing has 
important implications with respect to the competition between pairing and the 
longitudinal convective instability. From figure 10, i t  is clear that pairing can be 
excited at  roughly the same time as the latter instability, although pairing is rather 
unlikely to  precede it. If initial conditions are unfavourable for pairing, longitudinal 
convective instability may achieve finite amplitude first. If it then modifies the flow 
in such a way as to inhibit vortex merging, pairing could be prevented altogether. 

The growth rates afk)  calculated from our nonlinear simulations according to (7.5) 
can be used to verify the results of our linear stability analyses (96). This comparison 
tests the validity of our assumption concerning the separation between the 
timescales of the primary and secondary disturbances. Figure 15 illustrates such a 
comparison for the three simulations shown previously in figures 12(a, b )  and 13. In  
each case there exists a period of time for which the growth rate of the subharmonic 
@(+aKH) calculated from the nonlinear simulations is nearly constant and very close 
to the pairing instability values predicted by our linear theory. We note that the 
calculation of a(+zKH) is not able to distinguish between the excitation of the braid 
and pairing instabilities in the nonlinear simulations. However the highly localized 
character of the braid instability would tend to limit its ability to extract energy 
from the KH wave so that g(iaKH) is expected to be a fairly accurate measure of the 
pairing growth rate. 

A much more stringent test of our linear stability analysis is provided by a 
comparison of the predicted pairing instability eigenfunctions (figure 8) with the 
actual spatial structure of the pairing component in a nonlinear KH wave 
simulation. This pairing component may be defined as the difference between the 
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FIQURE 15. Comparison between the pairing-instability growth rates (.  . . . . ) predicted by our 
linear theory and the growth rate v&zKH) (-) of the subharmonic component in a nonlinear. 
simulation of pairing KH waves. The former results were obtained by analysing the stability of the ' 
simulation illustrated in figure 1 with respect to infinitesimal perturbations, while the latter were 
calculated from the nonlinear simulations corresponding to figures (a) 12(a), (b )  12(b), and (c) 13. 
In each case the growth rate of the fundamental mode u[aKH) is shown as a point of reference (---), 

flow fields calculated in a KH wave simulation with period L = 2hKH and those 
constructed from two periods of a simulation with L = hKH. (Pairing instability 
cannot occur in the latter model configuration.) The difference fields corresponding 
to the eigenfunctions of figure 8 are displayed in figure 16. The agreement between the 
two stream functions is rather impressive, particularly if one considers the close 
correspondence between the small-scale details of the fields. Although the agreement 
is not quite as close for the potential temperature and vorticity fields, the dominant 
features, such as the alternating layers of positive and negative perturbations, 
compare well. 

The fact, dictated by Floquet theory, that pairing instability involves the excitation 
of a spectrum of horizontal components that grow in unison rather than the 
amplification of only the first subharmonic component is illustrated in figure 17. At 
the time that the fundamental component achieves its maximum kinetic energy 
(figure 17a) ,  the spectral amplitudes are clearly separated into two distinct parts, the 
first comprising the fundamental and its higher harmonics, and the second comprising 
the subharmonic and its odd harmonics. As pairing proceeds, these two separate 
spectra blend together, forming a single monotonic spectrum a t  the time the 
subharmonic achieves its maximum kinetic energy (figure 17 c ) .  

Figure 18 shows the evolution of the potential temperature field and the stream 
function during the course of a pairing event with the initialization (7.7). Figure 
18(a) confirms the pre-eminence of the fundamental component of the KH wave a t  
the time it achieves maximum amplitude. By the time E($aKH) = E(aKH),  (figure 
18b) ,  the two vortices have moved closer together and have begun to execute the 
relative orbital motion characteristic of pairing. At the time of maximum 
subharmonic amplitude (figure 18c),  remnants of the parent vortices can still be 
discerned. In  figure 18 (d ) ,  these remnants have disappeared, and the wave height is 
nearly 2.5 times the original depth of the shear layer. The overturning fluid extrudes 
so far into the high-speed streams on either side of the shear layer that it is drawn 
out into thin, nearly horizontal layers (frames d-f ), indicating that a substantial 
transfer of energy back to the mean flow has occurred (see also figure 19). This 
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FIGURE 16. By subtracting the flow fields corresponding to a KH wave simulation with domain 
length L = 2AxH (in which pairing occurs) from those corresponding to two periods of a simulation 
with domain length L = A,, (in which amalgamation cannot occur), we isolate that part of the flow 
associated with the pairing process. The results presented here for (a )  stream function, ( b )  potential 
temperature, and (c) vorticity correspond to t = 40.3 and should be compared with the 
eigenfunctions shown in figure 8. Solid lines correspond to positive values, while dashed lines 
correspond to negative values. 

reinforcement of the mean shear results in the excitation of secondary KH instability 
in the lower-left and upper-right regions of the paired wave (figure 18 f ). 

It has been shown by Klaassen & Peltier (1985~)  that for the case in which 
subharmonic growth is prevented, an oscillatory exchange of energy occurs between 
the wave and the mean shear flow. The effect that vortex pairing has on this energy 
cycle is illustrated in figure 19, which shows the evolution of the mean, subharmonic, 



Transverse secondary instabilities 393 

- 1  
h h 

Y 

tz 
2 - 3  

el 
- 5  

-7 
0 6 12 18 24 0 6 12 18 I. 

k k 

0 6 12 18 24 
k 

FIGURE 17. Kinetic energy spectra E ( k )  for a pairing KH wave, shown for the following times: 
( a )  maximum E(a,,), t = 34.6; ( b )  E(a,,) = E(4aKH), t = 58.8; (c )  maximum E(&zKH), t = 76.1. 
The data  correspond t o  the simulation shown in figure 18. The wavenumber axis is labelled in units 
of bKH. 

and fundamental components of the wave kinetic energy (defined by (7.3)), as well 
as the potential energy defined by 

(7.10) 

It is evident that energy oscillations continue throughout the pairing process, and 
represent an even more pronounced feature of the flow after pairing has been 
completed. 

A time series analysis of the total wave kinetic energy reveals the presence of an 
oscillation with a non-dimensional period T x 56 in the simulations with L = A,, 
(no pairing). The same analysis of the simulation shown in figures 12(b)  and 19 
(L  = 2A,,) shows the presence of an additional period 7 x 24. These periods can also 
clearly be seen in the temporal traces of E(&aKH) and E(a,,) shown in figure 19. Thus 
at  the same time as pairing introduces a longer spatial period (the first subharmonic 
of the primary wave) into the layer, it also excites a shorter temporal period (which 
is very nearly equal to the first harmonic of the energy cycle). Subharmonic growth 
involves a substantial increase in wave height which permits the entrainment of fluid 
from the high-speed streams that lie above and below the original shear zone. The 
mixing of this high-momentum fluid into the billow is responsible for the introduc- 
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FIGURE 18. Contours of the potential temperature field (solid) overlayed on the stream function 
(dashed) for a pairing KH wave, shown for (a )  maximum E(ctKil) ,  t = 34.6; ( h )  E(ia,,) = E(a,,), 
t = 58.8, ( c )  maximum E(ictKIl), t = 76.1 ; (d )  locd minimum E(iaKH),  t = 89.9, (0) local maximum 
E(hKH), t = 104, ( f )  local minimum E(ictKH), t = 128. The domain length i s L  = 2h,, and contour 
intervals remains fixed throughout the wave history. The fields shown here correspond to  the 
simulation of figure 12 ( b )  

tion of the higher tcmporal frequency into the energy cycle as well as the initial 
substantial increase in wave kinetic energy. 

Figure 19 shows that subharmonic growth is curtailed when the mean flow kinetic 
energy is diverted from the subharmonic into the potential energy P and, to a lesser 
extent, the kinetic energy of the fundamental component E(a,,). Figure 18 shows 
that this increase in P is associated with a substantial increase in wave height, as the 
billow expends kinetic energy in order to raise heavier fluid into the upper (less dense) 
stream and force lighter fluid into the lower (more dense) stream. The maximum 
wave height clearly occurs in figure 18 ( d )  which most closely corresponds to the state 
of maximum potential energy P. This latter state lags the state of maximum 
subharmonic kinetic energy (figure 18c) by a substantial time interval. 

L)uring the next phase offlow evolution, the potential energy and thc subharmonic 
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FIGURE 19. Evolution of kinetic energies associated with the mean (-.-, E(O)) ,  subharmonic (-, 
E($a,,)), and fundamental (---, E(ctKH)), components of the pairing simulation shown in figures 
18 and 12 (6 ) .  Evolution of the potential energy P ( .  . . . . )  is also shown. Pu’ote that for purposes of 
clarity E(0)  has been reduced by an amount E, = 4.9 and the value of P has been increased so that 
P( t  = 0) = 0. 

kinetic energy both decrease as energy is returned to the mean shear flow. The fluid 
that has been forced into the high-speed streams during the period of active wave 
growth is drawn out into thin nearly horizontal layers. As a measure of how 
drastically this process depletes the billow, the wave kinetic energy K z ,?$(+aKH) a t  
t = 128 (corresponding to maximum E ( 0 ) )  is only about half the maximum kinetic 
energy achieved by the fundamental mode at  t = 34.6. This reinforcement of the 
mean shear sets the stage for renewed wave growth at t 2 130. 

It is well known that further amalgamations may take place after the initial 
pairing event is complete. For example Corcos & Sherman (1984) have numerically 
traced the evolution of an unstratified shear layer through two successive pairing 
events. Winant & Browand (1974) have observed four sequential pairings in a 
homogeneous shear layer, the limit being imposed by the upper and lower boundaries 
of the apparatus. However, Koop & Browand (1979) have observed that the pairing 
process is inhibited by stable stratification. For the value of stratification considered 
in the present work (Ri =0.07),  Koop & Browand report that the majority of 
vortices experience only a single pairing. Furthermore, we have shown that pairing 
in stratified flow can be substantially delayed if the subharmonic amplitude is low or 
if its horizontal phase is misaligned a t  the time nonlinear effects become important. 
Thus, the effects of the energy cycle oscillations that occur in our stratified 
simulations with L = A,, and L = 2A,, are expected to be observable in unforced 
shear layers. Indeed the tilting of the major axes of the billow cores, a behaviour 
associated with the energy cycle, is clearly evident in the observational data 
presented by Hernan & Jimenez (1982). 

Figure 20 displays the shear layer evolution for a simulation in which the model 
domain length is set to 3A,,  and the initial long-wave perturbation (i.e. wavelength 
3A,,) is in phase with the fundamental disturbance. In  this configuration of the 
numerical model, the first subharmonic of the fundamental KH mode is excluded 
from the Fourier spectrum of the shear layer. Thus pairing instability is impossible 



396 G .  P .  Klaassen and W.  R. Peltier 

0 '  I 

42 0 

FIGURE 20. Evolution of the  vorticity field in a 3 -+ 1 event. Since the domain length L = 3h,,, the 
components responsible for pairing are excluded from the simulation. The model is initialized with 
the incipient long-wave core centred at z = &,. Kon-dimensional times are ( a )  t = 62.3, (6) 76.1; 
and (c) 89.9. 

and vortex amalgamation may proceed through tripling interaction. Figure 20 
demonstrates that one of the possible tripling interactions consists of the simultaneous 
amalgamation of three vortices. In the early nonlinear stages of the tripling 
interaction, the left-most vortex is raised above the centre of the shear layer and the 
rightmost vortex is forced below it, so that the three vortex centres approximately 
define a line having negative slope. Orbital motion of this kind, which is in the same 
sense as the rotation associated with the mean flow, is similar to  that observed in the 
pairing process. 

When the phase of the perturbation with wavelength 3h,, is shifted by Qn radians 
relative to the fundamental, a rather different outcome is observed (see figure 21). 
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FIGURE 21. Evolution of the potential temperature field in a 3 + 2  event. This simulation is 
initialized with the incipient long-wave core centred at 5 = 0. (Pairing is excluded by the choice of 
domain length.) Kon-dimensional times are (a )  t = 62.3, ( b )  76.1, and (c) 89.9. 

The phase of the long wave in this case favours a tripling interaction in which three 
vortices combine to form two. In  the early nonlinear stages, the leftmost vortex is 
forced below the centre of the shear layer, while the rightmost is lifted above it, so 
that the three vortices approximately define a line having positive slope. This motion 
has a rotational sense about the point z = $H, x = $IKH that is opposite to that 
required for orbital merging, so that a 3 --f 1 interaction cannot occur. However the 
rotational sense of the displacement about the point z = $H, x = 0 (or x = L )  is 
consistent with orbital amalgamation of the leftmost and rightmost vortices (recall 
that the horizontal domain is periodic), so it is not surprising that these two vortices 
merge. It should be emphasized that this 3 --f 2 interaction is not a process in which 
two vortices merge and leave the third unaffected - the wavelengths of the two 
vortices shown in figure 21 (c) are 1.8hK, and 1.2hK, (giving a mean wavelength of 
1.5hK, for the layer, which is consistent with a 3 +  2 interaction). Also, the 
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amplitude of the lone vortex is increased by this interaction, indicating that the two 
merging vortices also transfer some of their kinetic energy to it. Upon completion of 
a 3 + 2 orbital amalgamation, the component k = :aKH contains the major portion of 
the wave kinetic energy, whereas the 3 + 1 interaction leads to the dominance of the 
k = $aKH component. 

The simulations shown in figures 20 and 21 indicate that a variety of complex 
subharmonic merging interactions may occur in a free shear layer. The tripling 
interactions we have demonstrated are completed before deformational merging can 
be excited (see figure 10) and thus unambiguously represent realizations of orbital 
merging. They confirm our interpretation given in $35 and 6 that orbital merging 
instability with b = $aKH can correspond to either a 3+  1 or a 3 + 2  interaction, 
depending on which of the two dominant components of the eigenfunction is most 
strongly amplified. Our preliminary results suggest that i t  is the relative phase of 
the k =&aKH and k = i a K H  components with respect to the fundamental that 
determines the outcome of the interaction. 

It is most instructive to review these vortex merging processes in the context of 
data reported by Hernan & Jimenez (1982) for the unstratified mixing layer. Their 
figure 9 shows a continuous distribution of eddy wavelengths in the mixing layer, a 
feature consistent with the finite bandwidth of the primary KH and secondary 
amalgamation instabilities. If pairing were the sole process acting to increase the 
predominant wavelength in the layer, one would expect to see peaks at  A = 2nA,,, 
where n = 0, 1,2,  ... . However peaks in the observed spectrum occur a t  A = A,,, 
1.5AKH, 2hKH, 3hKH and 4 h K H .  The peak a t  hKH is due to K H  instability. The fact 
that the bandwidth of the peak is much narrower than the bandwidth predicted by 
a linear stability analysis of the parallel flow may be attributed to nonlinear effects. 
Pairing instability clearly contributes to the peak a t  2hKH. Since the layer in the 
experiments under consideration is unstratified, vortex-draining instability also 
appears to contribute. Hernan & Jimenez have identified a somewhat infrequent 
‘bleeding’ interaction (at the 10% occurrence level) in which an eddy stopped 
growing and was slowly absorbed by its neighbours. The rather minor peak at 4h,, 
is evidently a consequence of double pairings and perhaps even quadrupling 
interactions. 

The intermediate peak a t  3AKH has been attributed by Hernan & Jimenez to a two- 
stage amalgamation process in which ‘an eddy of size one, when paired with a 
previously doubled eddy of size two, will give something of size roughly equal to 
three ’. Although a two-stage process of the kind proposed by Hernan & Jimenez is 
a possible contributing factor to this peak, our stability analyses together with the 
simulation of figure 20 provide a more direct mechanism for generating vortices of 
this length from K H  billows, namely the excitation of 3 + 1 merging instability with 
b = $aKH (vortex tripling). Our simulation shown in figure 21 also provides a 
mechanism for generating waves of average length 1.5hK,, namely the excitation of 
a 3 + 2 merging instability with Floquet parameter b = $aKH. (Note that this 1.5hK, 
peak corresponds to the highest frequency of occurrence in the layer.) Hernan & 
Jimenez have reported that tripling processes comprise 10% of the vortex 
interactions observed in an unstratified mixing layer in the absence of forcing. 

Ho & Huang (1982) have used weak forcing to excite various vortex merging 
interactions in mixing-layer experiments. When the forcing has a wavelength A, such 
that A, 5 2AKH the observed response has wavelength A,, and vortex merging is 
suppressed relative to the case in which subharmonic forcing is present. These data 
illustrate the dramatic effect that the initial relative amplitude of the subharmonic 
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and fundamental has on the onset of pairing instability. When the layer is forced in 
the range 3A,, 5 A, 5 4A,,, vortices merge in groups of three. The merging pattern 
most often observed in this case was a 3 -+ 2 interaction, although altering the phase 
of the forcing enhanced the occurrence of 3 + 1 events. This phase-displacement 
effect is consistent with the phase relationship we have found between the 3 --f 2 and 
3 + 1 orbital merging interactions. 

8. Discussion 
Our stability analyses of Stuart and Kelvin-Helmholtz vortices have dem- 

onstrated the existence of two distinct types of amalgamation instability, namely 
orbital and deformational merging, and that both are supercritical Hopf bifurcations. 
The first subharmonic in the orbital branch corresponds to the familiar pairing 
instability, while the same mode in the deformational branch corresponds to vortex- 
draining instability. 

Theoretical analyses of orbital-merging instability date back to the work of von 
Karman (see Lamb 1932), who employed the Biot-Savart law to show that a row of 
like-signed point vortices was unstable with respect to a continuous spectrum of 
modes, and that the most unstable of these corresponded to  the first subharmonic of 
the row wavenumber. His prediction of CT = a( 1 -a) for the dependence of the growth 
rate on the disturbance wavenumber a (given in units of the row wavenumber) agrees 
very closely with our calculation of the stability of a row of Stuart vortices in the 
point-vortex limit A + 1. 

Kelly (1967) considered the stability of more realistic continuous vorticity 
distributions, employing a weakly nonlinear method to make the analysis more 
tractable. Vortex merging was conceptualized as a resonant feedback process in 
which a pair of waves mutually reinforced each other through interactions with the 
primary vortex, thereby enhancing their growth with respect to the rate arising from 
instability of the parallel flow alone. When this theory was employed to calculate the 
stability. of Stuart vortices in the limit A + O ,  enhanced growth was found to be 
restricted to a rather narrow band of wavenumbers, centred on the first subharmonic 
and estimated to be of order-A width. 

The calculations reported in the present study show that the bandwidth of Stuart 
vortex-merging instability is of order-1 for amplitudes as small as A = 0.01. (Note 
that Kelly had expected the resonance theory to be valid for periodic disturbances 
with amplitudes up to A = 0.1 or 0.2.) An examination of the structure of the vortex 
merging eigenfunctions calculated with our general theory shows that the dominant 
components have horizontal wavenumbers given by k = band k = b - a,, where b < a,, 
and a, is the Stuart vortex wavenumber. The fact that the resonance theory did 
not include the latter component could explain the bandwidth discrepancy we have 
found. Our calculations also yield a subharmonic growth rate versus amplitude 
dependence (da/dA = 0.50) that differs from the resonance theory value by roughly 
a factor of two. (According to Kelly (1967, p. 661), our Stuart vortex amplitude A 
corresponds to his (C2- 1)"C z 6-iS3+ ... . Thus in the limit of small 6, our A 
corresponds to Kelly's S and the total horizontal velocity field of the Stuart vortex 
is given by 

- = tanh y + Ssech y tanh y cos x. 

An anonymous referee has pointed out that Kelly may have used 26 sech y tanh y cos x 
for the Stuart vortex perturbation velocity, and, if this is the case, Kelly's reported 
pairing instability growth rate should have been 0.48246 rather than 0.96486.) 

iw 
ay 
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Kelly’s theory has recently been extended to the case in which the horizontal phase 
of the subharmonic relative to the periodic flow is allowed to vary continuously (see 
Ho & Huerre 1984). The modified growth rate was found to vary smoothly from a 
maximum when the fundamental and subharmonic were in phase to a minimum 
when they were directly out of phase. Although this latter behaviour could be 
considercd as somewhat suggestive of the differences between vortex pairing and 
draining instabilities, it should be emphasized that our theory has demonstrated that 
pairing and draining constitute two distinct forms of vortex merging, and that each 
has a unique value of the relative horizontal phase. 

The analyses presented here have shown that vortex pairing is the most rapidly 
amplified mode in a rather broad continuous spectrum of orbital vortex merging 
instabilities. Consequently it is this first subharmonic component that is most likely 
to impose its wavelength on the layer. However, minor variations in the initial 
spectrum of noise can lead to the dominance of other wavelengths close to the first 
subharmonic. Furthermore, the bandwidth of merging instability is sufficiently broad 
for a relatively modest bias in the initial conditions to lead to the collective merging 
of three or perhaps even four vortices in a single interaction. (The second subharmonic 
growth rate is only 12 YO lower than that of the first.) The predictions of our theory 
are supported by experimental data that show that vortex tripling interactions occur 
a t  the 10% frequency level in an unforced homogeneous mixing layer (Hernan & 
Jimcnez 1982), and tripling events can constitute the dominant vortex amalgamation 
process in an appropriately forced shear layer (Ho & Huang 1982). 

Nonlinear simulations with a horizontal model domain equal to three times the 
wavelength of the fundamental K H  billow have demonstrated that the relative 
horizontal phase of the second subharmonic and the fundamental components a t  the 
time nonlinear effects commence determines the outcome of the tripling interaction, 
i.e. either a 3 + 2 or a 3 + 1 orbital amalgamation may occur. This result is consistent 
with the behaviour observed in forced-mixing-layer experiments by Ho & Huang 
(1982) and provides an explanation for the peaks found at  1.5AK, and 3AK, in the 
unforced-mixing-layer experiments of Hernan & Jimenez (1982). 

Our calculations indicate that vortex-draining instability is similar to an 
interaction observed in unstratified free shear layers by Hernan & Jimenez (1982), in 
which vortices ‘disintegrate slowly while they are bled by their neighbours ’. 
Nonlinear numerical simulations by Riley & Metcalfe (1980) indicate that it is 
possible to excite vortex draining interactions in unstratified free shear layers by 
altering the relative initial phase of the fundamental and the subharmonic. However, 
our nonlinear simulations indicate that in a moderately stratified (Ri = 0.07) 
unforced shear layer, orbital merging is the most probable amalgamation process for 
any combination of initial phases. Thus it appears that vortex-draining instability 
may only be of significance in unstratified or weakly stratified flow. 

Our analyses indicate that another type of transverse instability, which leads to a 
temporary distortion of the braids joining neighbouring billows, can occur in 
moderately stratified K H  flow. This instability presents a plausible explanation of 
the wave-like disturbances observed to form on the braids of K H  billow in naturally 
occurring flows (e.g. Thorpe 1968; Woods 1969). Since the braid distortions are 
evidently not due to secondary KH instability there is no compelling reason to  
believe that the mechanism causing them should necessarily have transverse 
symmetry. In future work we intend to examine the three-dimensional character of 
this instability. If the fastest-growing mode does have a non-zero spanwise 
wavenumber, it would in principle be possible for the braid instability to play a role 
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in the onset of small-scale disorder. We also note that our nonlinear simulations have 
demonstrated that secondary KH instability can occur after vortex pairing is 
completed. 

Of the instabilities considered here, the two that appear to have the greatest 
potential impact on the long-term evolution of the shear layer are the transverse 
vortex pairing and longitudinal instabilities (the latter being translative for 
unstratified flow and convective for stratified flow). The question of which instability 
dominates is an important one and is a subject of current research on which we will 
report in due course. 

The computations were carried out on the Cray supercomputers a t  the Centre 
Informatique de Dorval and the Ontario Centre for Large Scale Computation. This 
research was supported through grants from the Natural Sciences and Engineering 
Research Council and the Atmospheric Environment Service of Canada. 
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